

## Czech Metrology Institute

Okružní 31, 638 00 Brno

tel. +420 545 555 111, fax +420 545 222 728, www.cmi.cz

Laboratory:

Inspectorate for Ionising Radiation Prague, Radiová 1, 102 00 Prague 10

Department of Photon Dosimetry, tel. +420 266 020 285, fax. +420 266 020 466

## CERTIFICATE OF CALIBRATION

9051-KL-9468-14

Date of issue:

April 7, 2014

Page 1 of 2

Owner:

Laboratories Protecta Ltd., 22 Ivan Vazov Str., 1000 Sofia, Bulgaria

Собственик:

Лаборатории Протекта ООД, ул. "Иван Вазов" 22, 1000 София

User:

Inspection Body of type A at Laboratories Protecta Ltd., 22 Ivan Vazov Str.,

Ползвател:

1000 Sofia, Bulgaria

Орган за контрол от вид А към Лаборатории Протекта ООД, ул. "Иван Вазов"

22, 1000 София

Measuring instrument: TLD system PROTECTA MTDS, consisting of TLD reader and personal TL

dosimeter with TL detectors from CaSO<sub>4</sub>:Dy

Manufacturer:

Protecta Partnership, Sofia, Bulgaria

Type:

Reader PROTECTA VMD-3, dosimeter PROTECTA TLP-3,

detectors PROTECTA MMS-4

Serial number:

10/2007

The results of the calibration have been obtained following the procedures reported in this Certificate and are related only to the date, place and conditions of the calibration.

**Date of calibration:** March 5 + 6, 2014

Calibrated by:

Ing. Vladimír Sochor

Comas Tesar Ing. Tomáš Tesař

**Head of the Department:** 

Ing. Jiří Šuráň, MBA

Name

imprint

Name

This document may only be reproduced in full, except with the prior written permission by the issuing laboratory.

## CERTIFICATE OF CALIBRATION

Page 2 of 2

Measurement

Czech national standard of exposure and air kerma ECM 440-5/11-049

standards used:

The standard is traceable to the primary standards of BIPM – BIPM certificate No. 34

dated 14th September 2012

Calibration procedure:

See bellow

Place of calibration:

**CMI-IIR Prague** 

Ambient conditions:

98.4 kPa, 22.3°C, 32 % r.h

Calibration

conditions:

Collimated beam of <sup>137</sup>Cs gamma radiation, PMMA slab phantom

Results of calibration:

The calibration coefficient stated bellow is valid for the <sup>137</sup>Cs gamma radiation and for

personal dose equivalent values in the range of 0.1 to 600 mSv.

The calibration was performed using a group of TL dosimeters irradiated on a PMMA phantom in a collimated beam of  $^{137}$ Cs gamma radiation. In total 85 dosimeters in 6 groups were irradiated to different values of personal dose equivalent  $H_p(10)$  in a range of 0.07 to 550 mSv. 15 other dosimeters were not irradiated (and used to determine the background value). The dosimeters were then returned to the applicant and evaluated using an applicant's TLD reader.

From each evaluated group of irradiated dosimeters a net average reading  $R_i$  was calculated with the background value subtracted, together with the variation coefficient of the  $R_i$ . For each group an individual calibration coefficient  $N_i$  was calculated using a formula  $N_i = H_{ref,i}/R_i$ , where  $H_{ref,i}$  is the conventionally true value of  $H_p(10)$  for the particular group of dosimeters.

The resulting calibration coefficient N was then calculated as a weighted average of N<sub>i</sub>, where the inverse value of the individual variation coefficient was used as a weighting factor.

The calibration coefficient value is stated below:

 $N = 2.66.10^{-5} \text{ mSy/u}$ 

where "u" is the unit of a dosimeter reading R. The personal dose equivalent has to be calculated using a formula  $H_p(10)$  [mSv] = N . R [u]. The relative expanded combined uncertainty of the calibration coefficient is 10.4 %. (The conventionally true value has an uncertainty of 3.5%).

The standard uncertainty of measurement has been determined in accordance with EA- $\frac{4}{02}$  document. The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k corresponding to a coverage probability of approximately 95 %, which for normal distribution corresponds to a coverage factor k = 2.

End of calibration certificate.



imprint

9051-PS-9468-14